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The PISO method. which is a non-iterative method for the solution of the time-dependent, 
implicitly discretised fluid flow equations by operator-splitting. is extended here to handle 
reacting flows. The additional species conservation equations, togelher with the energy equa- 
tion, are incorporated into the predictor<orrector sequence of steps. Both turbulent-mixing 
and chemical-kinetics controlled combustion models are catered to. The method is tested in 
one- and two-dimensional cases and a comparison with a comparable iterative scheme is 
made. The results show that such reacting flows can be handled by the new scheme with 
effkiency, while temporal accuracy is maintained. I& 1991 Academic Press. Inc. 

INTRODUCTION 

In Cl]? a non-iterative technique, called PTSO, for the solution of the implicitly 
discretised time-dependent flow equations was described. The method was for- 
mulated for both laminar and turbulent inert flows, both compressible and incom- 
pressible. The non-iterative solution is accomplished at each time-step through a 
sequential predictor-corrector process within which the different dependent 
variables are updated individuaily. The term --operator-splitting” is invoked to refer 
to the separate operations effected to each of the variable fields, rather than to what 
is normally understood to be the time-splitting of terms. The avoidance of iteration 
at each time-step reduces the computing effort substantially, while the sequential 
nature of the solution obviates the need for block solution and its complexity. 
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The performance of the PISO method was evaluated in [Z]. where it was applied 
to compressible and incompressible flows. A comparison with similar computations 
using iteration verified the considerable advantages of PISO in speed. 

As was pointed out in [l], the predictorcorrector strategy need not be confined 

to the handling of the linear coupling between the equations in pressure and 
velocity. Extension of the method was indeed made to handle the strong coupiing 
through the source terms in the h--~ turbulence model equations. Here, a method. 
based on the PISB approach, to compute reacting flows is presented. 
the strong coupling arising from large density variations, the scheme 
cope with non-linear linkages acting through the convective contributions in the 
equations. This is in addition to the coupling through the source terms due to the 
reaction kinetics. 

The basic PISO method, in the form presented in 111. has in fact already been 
applied to steady-state reacting flows in, for example, L4, 41. However, in tkse 

implementations. the splitting was effected only to the momentum and continui:y 
equations, while the handling of the conservation equations for species and tem- 

rature (pertaining to the combusion processj was merely appended at t 
splitting sequence. No attempt was made to absorb the coupling betw 

two sets of equations within the splitting procedure. 
Although the above applications have demonstrated the utility and reliability of 

PISO, they do not take advantage of the strength of the method by incorporating 
all strongly coupled equations within the splitting process. More importantly, PISO 
was primarily devised to handle unsteady flow efficiently by avoiding iteration, 
which is made possible by this very splitting practice. Clearly, such a capability can- 
not be maintained when extension to reacting flows is made without the incerpora- 
tion of the equations governing combustion within the splitting process, It is this 
issue which is dealt with herein. 

It should be emphasized here. that the present method is mainlyy intended to cater 
to the strong coupling between the flow field and the combustion process, rather 
than to deal exclusively with the “stiffness” of the combustion equations themsebes 
which is inherent in the modelling of chemical reactions. Such stiffness can itself be 

andled by operator-splitting, as examination of the literature would reveal (see, for 
example, 15, 61). In the latter context operator splitting is introduced into the 
species equations alone to cope with two disparate time-scales, that of the combus- 
‘on process and that of transport, regardless of the two-way coupling between the 
ow and combustion process. Such splitting can indeed be incorporated within the 

method presented herein. However, for the purpose of this study, no’ such measures 
(save for the linearisation of one term to be outlined later j were found necessary, 
This was partly assisted by the fact that only single-step reactions were considered: 
it can also be argued that the implicit treatment of tbe reaction terms, facilitated ‘by 
the present method, must have been another main factor. It should be s ssed ikit 
the capability of the method to handle multi-step reactions remains to VeKifed, 

Since the present work is concerned with the method of solution rather than with 
the modeliing of reaction processes, little will be said about the combustion models 
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themselves. The handling of two such models is treated herein; the first is the 
conventional Arrhenius type for chemical-kinetics controlled combustion, and the 
second is for turbulent-mixing controlled reaction due to 171. The method will be 
explained with reference to a simple example in which two species (fuel and 
oxidant) react to give one product. The following sections will first present the 
governing equations to be solved, the operator-splitting procedure will then be 
detailed, and finally results of the computations will be compared with calculations 
performed using a comparable iterative method. 

GOVERNING EQUATIONS AND DISCRETISATION 

The Transport Equations 

The governing ensemble-averaged transport equations in Cartesian tensor 
notation for continuity, momentum, energy, and species (fuel) in reacting flow are 

and 

(1) 

(2) 

where all dependent variables are taken to be the ensemble-averaged mean when 
the flow is turbulent, and ,LJ is an effective viscosity, while gE and oI;. are effective 
Prandtl numbers. Presently, these diffusion coefficients are assumed to be given. In 
turbulent flow, their values might be determined from a turbulence model such as 
the k--E one; otherwise laminar values prevail. When a turbulence model is used, 
the associated equations should be handled within the splitting procedure. As this 
is outlined in Cl], reference to it will be omitted here. The energy, e, is related to 
the temperature, T, and the fuel mass fraction (also referred to as concentration), 
m, by 

e= C,T+mfH,, (5) 

where C, is the constant volume specific heat, and H, is the heat of combustion of 
the fuel. Term S, in Eq. (4) stands for the rate of consumption of fuel. 
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The pressure, p, and the density, p are related by the equation of state which ma-y 
be written in the form 

where? for a perfect gas, I,!I becomes IIRT. 
The main heat-releasing combustion reaction is presumed to be of the globai 

single-step irreversible form 

1 kg fuel + s kg oxidant -+ (1 + sf kg products, i4) 

where s is the stoichiometric combination ratio. 
The fuel combustion rate, S,, for a chemical-kinetics controlled combustion 

process is represented by the Arrhenius type expression 

SF = - .4p2m~,mo exp ’ -Y& 
\ > 

. 

where A and E are empirical coefficients, nz, is the concentration (mass fraction) 
of oxidant, and R is the universal gas constant. For turbulent-mixing contro’eled 
combustion, the expression proposed in [7] is used. It is 

where A’ and B are empirical coefficients, and t is the turbulent-mixing time scaie. 
The mass fractions of oxidant and product, denoted by m, and rnp’ respectiveiy, 
along with the inert concentration, mi, are obtained through Eq. (7) and the overah 
species conservation as 

ny + ‘?lP _ mp. i - - ill/, [ + G 
1$-S 

1 mj = 1, j=J’, 0, p, i, 

where the subscript I denotes an initial value. 

Discretisatisn 

As is the case with the basic PISO method in [I], the splitting procedure can be 
effected to any set of equations discretised by conventional difference schemes. For 
the sake of generality, the discretised equations are therefore presented here in the 
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operator form employed in [l], which caters to the various spatial discretisation 
schemes. For temporal discretisation, the Euler implicit scheme is again selected for 
ease of presentation. 

The governing equations (1) to (4) may be expressed, respectively, as: 

(1.2) 

1 
5 i(ye)“+’ -(pe)‘~)-B,e”+‘=J(e”+‘)-p”+‘di,l+’ (131 

-(pn~f)“}-(c,+S,)tn;t+‘=G(tn;+‘)+S”+’. (14) 

In E.qs. (11) to (14), similar notation and practices as those introduced in [l] are 
followed. Thus, the operators H, J. and G contain the convective and diffusive 
contributions and are defined as 

H= c A,u~.~ 
k 

J=c B,e, 

(15) 

(16) 

and 

(17) 

where index k- is a grid node identifier and the summation is over all the nodes 
surrounding the central node that are involved in the formulation of the finite- 
difference representation of spatial fluxes. The quantities A, B, and C are finite- 
difference coefficients; subscript 0 denotes the central coefficient. These central 
elements are taken to the left-hand side of the equations to enable their implicit 
treatment in the manner introduced in [ 11. 

The terms S and S, in the equation for species contain the rate of consumption 
of fuel, the expressions for which depend on the combustion model. Thus, for the 
turbulent-mixing controlled rate proposed in [7], 

S= -AJPmin 
trio Bm 

5 
inf,-- p 

s’l+s (18a) 

and 

s, = 0 (19a) 
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and. for an Arrhenius reaction rate, 

S = - Ap’sm-,.( mf - m ) exp 

and 

S 0 = - Ap2s(2m I - m) exp i - L’\ 
\ AT)’ 

where 

In arriving at expressions (18b) and (19b), the reaction rate term; S,, has &en 
hnearised in mf using Taylor series expansion. This enhances the stability of the 
procedure as it strengthens the diagonal dominance in the set of discretised equa- 
Cons. This was the only measure found necessary to stabilise the cal~~~at~o~s 
presented herein. This, it may be argued, is due to the simple single-step reaction 
considered here. Other linearisations (or operator-splittings in the sense used by 
[6] ) of the source terms in cases of multi-step reactions may be necessary, in which 
case the resulting expressions could still be incorporated in the overall IS0 
splitting. 

As in the case in [ 11, the pressure is computed from its own equation which is 
derived from a combination of the continuity equation (11) and the momenttim 
equations (12). The derivation of such an equation will be dealt with when the 
solution algorithm is presented. 

The above equations are general and do not relate to a particular spatial dis- 
cretisation scheme. It is these equations which will be used in the presentation of 
the splitting algorithm. For the purpose of the example calculations presented later. 
however, one such scheme had to be selected. This is the same as that described in 
[2], and hence requires no further elucidation here. It sutfi‘ces to say that the 
scheme employs a staggered grid, is of the finite-volume type9 and is based on a 
hybrid of upwind/central difference formulae. 

SPLITTING PROCEDURE 

In [ 11, the operator-splitting methodology was introduced to the equations of 
inert flow, in which the variations in density are solely due to compressibi’lity. 
Attention was focused there on the linear pressure-velocity coupling and, although 
it was pointed out that non-linear coupling through coefficients can be bandied by 
the same splitting procedure, this was ignored because it *was deemed unnecessary 
for the applications in hand. 
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In reacting flows, very large density gradients arise, leading to strong non-linear 
coupling of the equations; this can no longer be ignored in the formulation of the 
solution algorithm. As will be seen shortly, the incorporation of the species and 
energy equations demand significant restructuring of the predictor and corrector 
steps in the algorithm. This restructuring embodies the main departures from the 
original splitting. These are: 

(i) The energy as well as the species equations are now solved in implicit 
form together with momentum in the same predictor step. This is to account for the 
rapid variations in temperature and concentration over the time-step brought about 
by combustion and which have profound influence on subsequent corrector steps. 

(ii) The coefficients in the corrector steps are now updated to reflect the 
large variations in density. The updating is carried out only after the continuity- 
based pressure equation is solved. This ensures that conservation is maintained, 
which is crucial especially in the calculation for species. 

(iii j Energy and species corrector steps now follow each momentum correc- 
tor. This leads to an increase in the accuracy of the overall scheme (this can be 
shown following the analysis in [ 11; hence it is not presented here). 

Another change that is made is the solution for pressure itself rather than for 
pressure increments as in [ 11. This is merely an organisational matter which does 
not affect the outcome of the calculations. The details of the splitting are presented 
in what follows. 

Let superscripts *, **, and *** denote intermediate field values obtained during 
the splitting procedure. The steps in this procedure are as follows: 

(a) Predictor step. The velocity, density, viscosity, and pressure field prevailing 
at time t” are used to calculate the coefficients A, B, and C in Eq. (15) to (17). The 
governing equations are solved in the following sequence: 

(i) Energy. Based on Eq. (13), this is: 

(ii) Species. From Eq. (14), this is: 

(iii) Momentum. Equation (12) is taken as: 

(21) 

(22j 

Equations (20), (21), and (22) can be solved by one of the standard techniques to 
yield the e*, m,?, and U: fields, the last of which, it should be noted, will not in 
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general satisfy the continuity equation (11). The temperature, T*, is now calculated 
from Eq. (5). Note that the order of solution of these equations is of no conse- 
quence, as ali coefficients are based on old time level values. 

(b) First corrector step. (ij Momentum corrector. A new velocity field, ii?*, 
together with corresponding pressure and density fields, p* and o*, are sought to 
satisfy the continuity equation: 

1 . . 
-& tp* - p”) + di(p”Ll** ) = 0. 

The momentum equation (12 j is now written in an explicit corrector form as 

where all the coefficients A are still evaluated at the old time level (note that the 
velocities UT and the density p” do not satisfy continuity). Equations (23 j an.d (241 
are now used to derive the pressure equation in the fashion presented in [I]. Thus, 
taking the divergence of Eq. (24) and substituting into Eq. (23) gives 

where, in arriving at Eq. (25). p* has been replaced by: 

p* = p*y$*. 

Equation (2s) can be solved for p , *’ the new densities and velocities, p* and I.{:*. 
are now computed from Eqs. (26) and (24), respectively. These new fields: it should 
be recalled. satisfy the continuity equation (23). 

(iij Energy corrector. The UT* and p* which now satisfy continuity are used 
to update the B coefficient in equation (17). The energy corrector equation is thus 
taken as 

which yields the e** field. 
(iii) Species corrector. Here, also, u,F* and p* are used to update the C 

coefficient in Eq. (16). The species corrector equation is 
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which yields the IF?-?* field. The temperature is then updated from Eq. (5) as 

T”* = e** - r?lnf*H c 
c, ’ (29) 

whence 

***=j& (30) 

(c) Second corrector step. (i) Momentum corrector. For this step, the momen- 
tum equation is 

** ***=H*(u:‘*j+!clI,-~ip**, 
ui iit ’ (31) 

where it should be noted that all A coefficients in Eq. (15) and (31) are based on 
p*andui . ** By combining Eq. (31) with the continuity relation 

$P**- P”) + diif **,***) = 0, (32) 

the following pressure equation is obtained: 

(33) 

In arriving at the last equation, the followinig equation of state has been invoked: 

P ** = p**JI**. (34) 

Solution of Eq. (33) yields p** which is used to obtain p**, via Eq. (34), and 
velocity u)** from Eq. (31). 

(ii) Energy corrector. The coeflicients B in the energy equation are updated 
using the most recent values of density and velocity to give the second energy 
corrector equation, 

which yields e***. 
(iii) Species corrector. Similarly, the second-corrector species equation is 

P ** 
n 

-- 
6t 

q--s** 
0 

> 
nr;c**=G**jm:*)+~m;+S**, 

bt (36) 



i~hich gives the I?,+** field. The temperature is then obtained from 

The density p**, velocity UT**, fuel concentration ?I?:**, and temperature T”** 
are taken to represent the field values at the next time level, rz + 1; this completes 
the sequence in the solution of the equations over the time-step. It should be noted 
that, for non-reacting flows, the method reduces to the original PISQ with coed- 
ficients being updated at each corrector step. 

RESULTS 

The present methodology is applied to both one- and two-dimensional unsteady 
flame propagation in confined chambers. The purpose of the calculation is to; 

(i) demonstrate that the method is capable of handling two different, single- 
step reaction models, including that of the Arrhenius type; 

(ii) show, at least for the present choice of discretisation scheme, that the 
temporal errors introduced by the splitting procedure vanish with 6: and do so at 
least as fast as the temporal discretisation error; 

(iii i evaluate the saving in computing effort achieved by avoidance or’ 
iteration; and 

(iv) demonstrate the ability of the method to handle large time steps when 
high temporal accuracy is not demanded. 

To accomplish objectives (ii) and (iii) above, comparisons are made against com- 
putations with an existing iterative method employing the same spatial and tem- 
poral difference schemes. Such a method yields (by virtue of iteration) the exact 
solution (to within the iteration tolerance imposed of around I@-’ on residuals) to 
the discretised equations over each time-step. Hence. the errors in the fields thus 
calculated will be solely due to the spatial and temporal discretisation schemes. By 
refinement of 6t, the value at which the chosen temporal difference scheme gives a 
time-accurate solution can therefore be found. Comparison with such solution at 
the same value of bt will reveal the temporal splitting errors contained in PPSO. 

The iterative method chosen for the purpose of comparison is SIMPLE described 
in its original form in [S] and its application to reacting flows in Cl 12. In the 
latter, the species and energy equations are solved after momentum and pressure 
within each iteration. The reason for the choice is that the method is one of the 
most widely used and established. Improvements on SIMPLE have been developed 
in the form of the SIMPLER [9] and SIMPLEC ilO] methods. These are 
reported to be more stable than SIMPLE and can be signi~~antly faster when the 
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FIG. 1. Reactedness distribution for turbulent-mixing controlled reaction. 

relaxation factors are optimised. The comparisons presented herein, therefore, have 
to be viewed with these improvements in mind. Nevertheless, the reported increase 
in speed with these methods is still not sufficient to offset the cost of iterating at 
each time-step, a process which the non-iterative PISO dispenses with. 

One-Dimensional Compressible Reacting Flow 

The one-dimensional compressible case chosen is that of a reacting flow with 
constant effective viscosity (values typical of a turbulent flow) in a long adiabatic 
duct with closed ends. The effects of wall shear are accounted for approximately. 
A uniform mesh of 200 cells was mainly used. In the absence of an ignition model, 
burning is triggered by artificially depleting the fuel in a small region (encom- 
passing one computational cell) adjacent to one end of the duct, at a rate which 
consumes f% of the total charge over a period of T, where 5 is the mixing time 
scale, to be defined shortIy; thereafter, combustion is allowed to proceed at its own 
rate. 

Calculations were first performed for turbulent-mixing controlled combustion 
using the model in [7], with constants: ‘4 = 4.0 and B = 0.5. The turbulent mixing 
time scale, 7 (0.01 s), and the viscosity levels are taken from other combustion 
simulations. The iterative scheme is used to find the maximum allowable value of 
the computational time-step (say, st,), for which the temporal truncation error is 
acceptably small.’ Under-relaxation was necessary to stabilise the computations, 
values of 0.5 being used for the velocity, 0.7 for the energy and fuel concentration, 
and 1.0 for the pressure. Similar calculations were then performed using the present 
methodology using time-steps that are multiples of 61,. Figures 1, 2, and 3 show the 

’ Only the final time-accurate solutions resulting from these exercises are presented for clarity 
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FIG. 2. Temperature distribution for turbulent-mixing controlled reactioz 

predictions along the duct at time t= 3~. Figure 1 shows the distribution of ?he 
reactedness, defined as 

where the superscripts LI and b stand for unburnt and fully burnt values, respec- 
tively. Figure 2 shows the distribution of the normalised temperature, defined as 

I 
b:/bt, 

h.0 __ 16 

EiG. 3. Velocity distribution for turbulent-mix@ controlled reaction 
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and Fig. 3 displays the corresponding gas velocity normalised by the empirically 
determined turbulent flame speed ( _= 2 k/q ABk,/a,, where C, and g/ are tur- 
bulence related constants, and k. is the initial turbulent kinetic energy). The reason 
for temperature rise behind the flame front in Fig. 2 is due to the pressure work 
term (p(atr,/~?x,)) that appears in the energy equation (3); this is significant due to 
the steep velocity gradient and the low value of density behind the flame. The dif- 
ferent curves in each case are those obtained with the present method for different 
values of c?t/dt,, as well as that for the time-accurate solution obtained with the 
iterative method. The latter curve is indistinguishable from that pertaining to 
St/Gt, = 1, verifying that the temporal splitting errors vanish before the errors intro- 
duced by the temporal difference scheme used. 

Next, calculations were performed for a chemical-kinetics controlled reaction 
(Arrhenius) to test the performance of the present method for this difficult situation 
(where the reaction reate increases exponentially with temperature). The reaction 
rate constants are those for a pure hydrocarbon reaction and are taken as 
A = 1.5 x IO8 m’/kg,/s and E= 1.0 x 10” J/kg mole. For this situation, the iterative 
scheme proved troublesome to converge and attempts to obtain a solution were 
abandoned because of the excessive computing time requirement. Figure 4 displays 
the results from PISO, where the effect of the computational time-step (normalised 
by the same value of s as in the previous case, in the absence of a suitable time 
scale) on the calculated reactedness (v.~) at t = 3s. The temporal truncation error 
becomes acceptably small at about dt=0.003~. However, it could not be ascer- 
tained whether this is dictated by the temporal errors in the splitting or in dis- 
cretisation, since no solutions could be obtained with the iterative method. Judging 
by the performance of PISO in the previous as well as the following cases, it is con- 

LO - 

0.8 - 

0.6 - 

0.L - 

bt/r 

- 0.05 

-- 0.025 

--__ 0.0125 

-.-. 0.00625 

-..- 0.00313 

FIG. 4. Fuel concentration profiles at r = 3r for chemical-kinetics controlled combustion. 
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FIG. 5. Fuel concentration profiles at different times for chemical-kinetics contrclled comtiustio::. 
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FIG. 6 Fuel concentration profile a.long one side of a two-dimension& ctiamber 



402 ISSA ET AL. 

3 -- = 8.32 M/S 
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Xi) 
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~0.90000 
~0.70000 
~0.50000 
” 0.30000 
.0.10000 

FIG. 7. Field variables in turbulence-controlled reaction in two-dimensional chamber at r = 0.03 s: 
(i) velocity vectors; (ii) fuel concentration; (iii j temperature. 
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FIG. 7 --Contimed 

jectured here that it is the temporal difference scheme, which is only first order 
accurate, that dictates such small 6t. It should, of course, be remembered that the 
equations in this case are very “stiff” and very steep variations prevail, putting g:eat 
demands on the scheme. The fuel concentration profiles, with the finest Sz, at 
different time levels are shown in Fig. 5. Here a fine mesh of 400 cells is used to 
capture the sharpness of the flame front. 

Here again two cases are presented; one with turbulent-mixing conrrolied reac- 
Zion and the other with Arrhenius type of reaction. In the first case. a reacting flow 
with a constant effective viscosity (at a value typical of turbulent flow) is studied 
in a closed square chamber of 50 x 50 cm. The usual no-slip boundary conditions 
are imposed at the sides of the two-dimensional adiabatic chamber and a unifarm 
grid of 40 x 40 cells was used. As was done in the previous case, burning was started 
by artificially causing the fuel in the cell located at one of the corners of the cham- 
ber to be depleted at a rate which consumed &% of the total charge in the cell over 
a period of z; after that, combustion is allowed to proceed at its own rate. For tSs 
case: calculations were performed for turbulent-mixing controlled combustion with 
the same values for coefficients A and B, mixing lime scale. 5. and viscosity as those 
used in the one-c8imensional case. 

As in the one-dimensional case, computations were first performed with the 
iterative scheme using various values of 6t to find the value br, for which the tem- 
poral errors become negligible. The exercise was then repealed with the present 

-0.9GOOG 
-0.10000 
.3.50000 
.0.30000 
.0.10000 
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i) - =6.63 M/S 

.,, ,._____-----__-----_--~~~-~~~.. 
I,,,,,,,,,.,,.._CC~....~C____--~~-~~.~~~~. 

.,,,,,,,,,,,,,,~~,,......~~~~~~~~~~~ TIME = 0.045 S 

ii) 

TIME = 0.045 S 

NORMALISED FUEL 
CONCENTRATION 

~0.90000 
-0.70000 
-0.50000 
=0.30000 
*0.10000 

FIG. 8. Field variables in turbulence-controlled reaction in two-dimensional chamber at I =0.045 s: 
(i) velocity vectors; (ii) fuel concentration; (iii) temperature. 
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NORM.4LI5’ED 
TEMPE.RATlXE 

FIG. 8--Continued 

method using time-steps which are multiples of hi,. The results of these computa- 
tiolns are displayed in Fig. 6 which shows the predicted reactedness at i = 3~ along 
one of the sides adjacent to the corner where ignition was initiated. Once again, it 
is clear that a time-step independent solution is obtained with PISO at the same 
step size as the iterative scheme, i.e., at bt/dr, = 1. The distributions of velocity, kel 
concentration, and temperature (both normalised as before) at two time levels are 
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1 
x. 

x\ 
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F!G. 9. Ratio of computing time of iteratixve/present method. 
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-__ __- __- 
i) - ==8.24M/s 

TIME =3-000 MS 

i) 

r----- 
-) TIME =3.000 MS 

NORMALISED FUEL 
CONCENTRATION 

-0.90000 
~0.70000 

+0.50000 

“0.30000 
*0.10000 

FIG. 10. Field variables in chemical-kinetics controlled reaction in two-dimensional chamber at 
I = 3 ms: (i) velocity vectors; (ii) fuel concentration; (iii) temperature. 
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NORMALISED 
TEMPE~RA TURE 
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L 

illustrated in Figs. 7 to 8; the computation was performed with the finest time-sien 
size. The results appear to be plausible. 

In Fig. 9, the ratio of computing effort required by the iterative method to that 
by PISO is plotted as a function of the time-step size, It is evident that PZSO is not 
only able to cope with large 6t, but it is much faster, especially when a time- 
accurate solution (6t!‘dt, = 1) is required. 

In the second case, the same 40 x 40 mesh was employed in a square chamber of 
5 x 5 cm, the reduction in size from the previous case being necessitated by the 
desire to capture the thin flame by as many cells as possible without mesh re5ne- 
merit. Otherwise, the flame would have been far too thin to be captured by the 
mesh, and the calculations would have been somewhat meaningless. Other 
parameters are retained at their values presented for the previous cases. However, 
in order to investigate the flame propagation in the absence of wail effects, f&E siip 
was assumed at the walls; this should give a cyhndrical frame front. Figs. IO and II 
which display the velocity vector field and the normalised fuel concentration and 
temperature contours at two time levels, indeed show that the flame front is cyiin- 
drical. They also exhibit that a fairly thin flame front is predicted as is expected 
from a chemical-kinetics controlled reaction. 

CONCLUSICPNS 

The PISO method of [1] is extended and suitably modified lo handle the strong 
coupling arising in the equations governing reacting flows. This entails not on.ly the 
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i) -= = E.57 M,T- 

TIME =3.500 MS 

ii) 

NORMALISED FUEL 
CONCENTRATION 

~0.90000 
-0.70000 
-0.50000 
~0.30000 
*0.10000 

FIG. 11. Field variables in chemical-kinetics controlled reaction at r=4.5 ms: (i) velocity vectors; 
(ii) fuel concetration; (iii) temperature. 



REACTING FLOW PISO q&i 

NCRMkLlSED 
TEMPERATliRE 

= 0.50000 
-0.7cl00c 
” 0.50000 
” 0.30030 
~5.10000 

FIG. 1 I -Coniinued 

handiing of additional source terms, but also the accounting for the rapid variariocs 
in convective coefficients due to steep density changes. Reorganisation of the 
splitting sequence has been necessary to achieve all this. 

The new scheme was applied to two problems of unsteady reacting flows, in one- 
and two-dimensional closed chambers. The results demonstrate that the spiitting 
process undermines neither temporal accuracy nor stability, Comparison with an 
existing iterative scheme reveals that reacting flow TWO is severai times faster than 
its iterative counterpart, and that the scheme is equally capable of handhng 
turbulent-mixing and chemical-kinetics controlled combustion. 

The authors wish to thank Dr. A. Folefac of the Department of Min-r L d Resources Engineerkg ffx 
assistance in carrying out some of the calculations. 
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